256 research outputs found

    An IRAS Hires study of low mass star formation in the Taurus molecular ring

    Get PDF
    The Taurus molecular cloud supposedly has no star clusters but only isolated star formation. However, the Infrared Astronomical Satellite (IRAS) shows us that a small star cluster is currently forming in Taurus. Most of the sources are deeply embedded and are probably low-mass protostars. We use High Resolution (HiRes) images of the IRAS data from the Infrared Processing and Analysis Center (IPAC) to look for additional infrared members of the cluster. We also investigate the question of whether the infrared emission matches predictions for protostellar sources by examining whether the dust emission is resolved on scales of one arcminute (approx. 10(exp 17) cm). With the exception of a luminous visible star, HD 29647, we find that the sources L1527, TMC1A, TMC1, TMC1C, tMR1, and IC2087 are unresolved in the HiRes images at 60 microns. Further analysis of IC2087 shows that it is unresolved at all four IRAS wavelengths

    Multi-band Optical and Near-infrared Properties of Faint Submillimeter Galaxies with Serendipitous ALMA Detections

    Get PDF
    We present a catalog of 26 faint submillimeter galaxies (SMGs) in the XMM-LSS field identified by cross-matching serendipitously detected sources in archival ALMA Band 6 and 7 data with multi-band near-infrared (NIR) and optical data from the Spitzer Extragalactic Representative Volume Survey, the VISTA Deep Extragalactic Survey, the Canada-France-Hawaii Telescope Legacy Large Survey, and the Hyper Suprime-Cam Subaru Strategic Program. Of the 26 SMGs in our sample, 15 are identified here for the first time. The majority of the sources in our sample (16/26) have faint submm fluxes (0.1 mJy<S1 mm<1 mJy0.1\,{\rm mJy} < S_{\rm 1\,mm} < 1\,{\rm mJy}). In addition to the 26 SMGs with multi-band optical and NIR detections, there are 60 highly-reliable (>5σ>5\sigma) ALMA sources with no counterpart in any other band down to an IRAC [4.5] ABAB magnitude of ≈23.7\approx 23.7. To further characterize the 26 galaxies with both ALMA and optical/NIR counterparts, we provide 13-band forced photometry for the entire catalog using the Tractor and calculate photometric redshifts and rest-frame colors. The median redshift of our sample is ⟨z⟩=2.66\langle z \rangle = 2.66. We find that our sample galaxies have bluer colors compared to bright SMGs, and the UVJ color plot indicates that their colors are consistent with main sequence star-forming galaxies. Our results provide new insights into the nature of the faint population of SMGs, and also highlight opportunities for galaxy evolution studies based on archival ALMA data.Comment: Accepted for publication in ApJ, 32 pages, 11 figures, 4 table

    Interacting galaxies resolved by IRAS

    Get PDF
    We discuss procedures, limitations and results of high resolution processing of interacting galaxies observed by the Infrared Astronomical Satellite (IRAS). Among 56 potentially resolvable interacting groups selected from the IRAS Bright Galaxy Sample, 22 systems have been resolved yielding fluxes for a total of 51 galaxies. In about 2/3 of the resolved pairs, both galaxies were detected in the far-infrared. A set of isolated non-interacting galaxies was chosen from the Bright Galaxy Sample for comparison with the interacting galaxies. For the current sample, which naturally excludes close pairs and ultraluminous merging systems, the primary conclusions are: (1) It is not possible to distinguish individual interacting galaxies from isolated galaxies of similar luminosity on the basis of infrared properties alone. (2) No direct correlation was found between measures of interaction strength and indicators of enhanced star formation within the resolved systems. (3) Comparison of the interacting and isolated samples indicates statistically significant differences between their distributions of far-infrared color ratios, luminosities, and surface brightnesses. Even during the early stages of interaction spanned by these systems, in a statistical sense, tidal perturbations substantially boost far-infrared indicators of star formation compared to non-interacting systems. We also briefly discuss future prospects for pushing the IRAS data to its limits for additional interacting systems

    HST NICMOS imaging of z~2, 24 micron-selected Ultraluminous Infrared Galaxies

    Full text link
    We present Hubble Space Telescope NICMOS H-band imaging of 33 Ultraluminous Infrared Galaxies (ULIRGs) at z~2 that were selected from the 24 micron catalog of the Spitzer Extragalactic First Look Survey. The images reveal that at least 17 of the 33 objects are associated with interactions. Up to one fifth of the sources in our sample could be minor mergers whereas only 2 systems are merging binaries with luminosity ratio <=3:1, which is characteristic of local ULIRGs. The rest-frame optical luminosities of the sources are of the order 10^10-10^11 L_sun and their effective radii range from 1.4 to 4.9 kpc. The most compact sources are either those with a strong active nucleus continuum or those with a heavy obscuration in the mid-infrared regime, as determined from Spitzer Infra-Red Spectrograph data. The luminosity of the 7.7 micron feature produced by polycyclic aromatic hydrocarbon molecules varies significantly among compact systems whereas it is typically large for extended systems. A bulge-to-disk decomposition performed for the 6 brightest (m_H<20) sources in our sample indicates that they are best fit by disk-like profiles with small or negligible bulges, unlike the bulge-dominated remnants of local ULIRGs. Our results provide evidence that the interactions associated with ultraluminous infrared activity at z~2 can differ from those at z~0.Comment: ApJ, in press. Document revised to match the journal versio

    An Application of Multi-band Forced Photometry to One Square Degree of SERVS: Accurate Photometric Redshifts and Implications for Future Science

    Get PDF
    We apply The Tractor image modeling code to improve upon existing multi-band photometry for the Spitzer Extragalactic Representative Volume Survey (SERVS). SERVS consists of post-cryogenic Spitzer observations at 3.6 and 4.5 micron over five well-studied deep fields spanning 18 square degrees. In concert with data from ground-based near-infrared (NIR) and optical surveys, SERVS aims to provide a census of the properties of massive galaxies out to z ~ 5. To accomplish this, we are using The Tractor to perform "forced photometry." This technique employs prior measurements of source positions and surface brightness profiles from a high-resolution fiducial band from the VISTA Deep Extragalactic Observations (VIDEO) survey to model and fit the fluxes at lower-resolution bands. We discuss our implementation of The Tractor over a square degree test region within the XMM-LSS field with deep imaging in 12 NIR/optical bands. Our new multi-band source catalogs offer a number of advantages over traditional position-matched catalogs, including 1) consistent source cross-identification between bands, 2) de-blending of sources that are clearly resolved in the fiducial band but blended in the lower-resolution SERVS data, 3) a higher source detection fraction in each band, 4) a larger number of candidate galaxies in the redshift range 5 < z < 6, and 5) a statistically significant improvement in the photometric redshift accuracy as evidenced by the significant decrease in the fraction of outliers compared to spectroscopic redshifts. Thus, forced photometry using The Tractor offers a means of improving the accuracy of multi-band extragalactic surveys designed for galaxy evolution studies. We will extend our application of this technique to the full SERVS footprint in the future.Comment: accepted to ApJ, 22 pages, 12 figure

    Lensing Magnification: A novel method to weigh high-redshift clusters and its application to SpARCS

    Get PDF
    We introduce a novel method to measure the masses of galaxy clusters at high redshift selected from optical and IR Spitzer data via the red-sequence technique. Lyman-break galaxies are used as a well understood, high-redshift background sample allowing mass measurements of lenses at unprecedented high redshifts using weak lensing magnification. By stacking a significant number of clusters at different redshifts with average masses of ~1-3x10^14M_sun, as estimated from their richness, we can calibrate the normalisation of the mass-richness relation. With the current data set (area: 6 deg^2) we detect a magnification signal at the >3-sigma level. There is good agreement between the masses estimated from the richness of the clusters and the average masses estimated from magnification, albeit with large uncertainties. We perform tests that suggest the absence of strong systematic effects and support the robustness of the measurement. This method - when applied to larger data sets in the future - will yield an accurate calibration of the mass-observable relations at z>~1 which will represent an invaluable input for cosmological studies using the galaxy cluster mass function and astrophysical studies of cluster formation. Furthermore this method will probably be the least expensive way to measure masses of large numbers of z>1 clusters detected in future IR-imaging surveys.Comment: 5 pages, 1 figure, 1 table, accepted by ApJL, minor revision

    A New Large Super-Fast Rotator: (335433) 2005 UW163

    Get PDF
    Asteroids of size larger than 150 m generally do not have rotation periods smaller than 2.2 hours. This spin cutoff is believed to be due to the gravitationally bound rubble-pile structures of the asteroids. Rotation with periods exceeding this critical value will cause asteroid breakup. Up until now, only one object, 2001 OE84, has been found to be an exception to this spin cutoff. We report the discovery of a new super-fast rotator, (335433) 2005 UW163, spinning with a period of 1.290 hours and a lightcurve variation of r′∼0.8r'\sim0.8 mag from the observations made at the P48 telescope and the P200 telescope of the Palomar Observatory. Its Hr′=17.69±0.27H_{r'} = 17.69 \pm 0.27 mag and multi-band colors (i.e., g′−r′=0.68±0.03g'-r' = 0.68\pm0.03 mag, r′−i′=0.19±0.02r'-i' = 0.19\pm0.02 mag and SDSS i−z=−0.45i-z = -0.45 mag) show it is a V-type asteroid with a diameter of 0.6+0.3/−0.20.6 +0.3/-0.2 km. This indicates (335433) 2005 UW163 is a super-fast rotator beyond the regime of the small monolithic asteroid.Comment: 18 pages, 4 figures, 1 table Accepted by ApJ
    • …
    corecore